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The aeroacoustic response of a diaphragm in a pipe is studied by means of an analytical
model and experimental measurements. The study is restricted to quasi-two-dimensional
diaphragms with a sharp-edged rectangular aperture at conditions for which the acoustic
source region can be considered compact. The compactness of the source can be realized
under two conditions: either a low Strouhal number and a jet Mach number of the order
unity; or a low jet Mach number and a Strouhal number of order unity. In this paper, the
focus is on the "rst case. The second case of low Mach number and Strouhal number of
order unity is discussed in a companion paper. The results of a quasi-steady theory are
compared with measurements of the re#ection and transmission coe$cients of a diaphragm.
The theoretical model is based on Ronneberger's model for a step-wise expansion
(D. Ronneberger 1967, Acustica 19, 222}235) and Bechert's description of an ori"ce used as
an anechoic pipe termination (Bechert 1980 Journal of Sound and<ibration 70, 389}405). An
important phenomenon associated with the #ow through a diaphragm is the so-called vena
contracta e!ect. This e!ect is analyzed theoretically as a function of diaphragm opening and
jet Mach number by using analytical results for a Borda tube. This allows the use of the
theory up to Mach numbers of unity in the free jet downstream of the diaphragm. It is shown
that at low frequencies the model and the experimental results are in good agreement.
Signi"cant deviations appear only when the Strouhal number reaches unity.

( 2001 Academic Press
1. INTRODUCTION

Diaphragms are common elements in pipe systems, either used as a constriction of the #ow
in a pipe or as an aperture to a Helmholtz resonator mounted in the pipe wall. In Figure 1,
examples of such con"gurations are shown. Both con"gurations are commonly used in car
mu%ers to suppress resonances in the exhaust pipe. Although several experimental
investigations into the e!ects of diaphragms have been carried out previously, a detailed
0022-460X/01/260035#22 $35.00/0 ( 2001 Academic Press



Figure 1. Con"gurations of a diaphragm in a pipe with a mean #ow.
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quantitative comparison of experimental and theoretical results is still lacking. In this
paper, the focus is on the diaphragm acting as a strong constriction to the main pipe #ow
and experimental and theoretical results are compared. The in#uence of rapid changes in
the pipe cross-section on the propagation of acoustic waves was observed already in the
19th century by Rayleigh [1]. Ingard [2] and Ingard and Ising [3] studied non-linear
phenomena at large acoustic amplitudes associated with the acoustic #ow through an
ori"ce. But it was not until 1967 that Ronneberger [4] proposed a simple low-frequency
theoretical description for the aeroacoustic e!ect of a subsonic mean #ow through
a stepwise expansion in a pipe taking into account e!ects due to mean-#ow compressibility
and associated variations in entropy. Bechert [5] followed by proposing a similar
incompressible quasi-steady description for the e!ect of a subsonic mean #ow through
a diaphragm used as a pipe termination. He also provided an overview of the experimental
work that was done until 1980. As an important result of his theoretical description Bechert
found that for a certain mean #ow Mach number the pipe termination is completely
anechoic. This phenomenon has been discussed in terms of vortex-sound theory by Howe
[6] and con"rmed experimentally by Cummings and Eversman [7]. The theoretical work
presented in this paper is an extension of the theories of Ronneberger and Bechert. It
describes a diaphragm in a pipe, not just a diaphragm as a pipe termination, and it includes
compressibility e!ects which had been neglected by Bechert. Another important
phenomenon of the #ow that is incorporated in the theoretical model is the so-called vena
contracta e!ect. In other words, account is taken of the fact that #ow separation at the
diaphragm induces the formation of a jet #ow which has a cross-sectional area smaller than
the aperture of the diaphragm itself, as sketched in Figure 2. The idea to study the
Mach-number dependence of this e!ect comes from preliminary studies of the acoustic
response of diaphragms at high subsonic Mach numbers by Parchen and Bruggeman [8].
They could not explain their observations without assuming a Mach-number dependence of
the vena contracta factor.

First, a quasi-steady acoustic model is presented for low-Mach-number #ows. The
acoustic e!ect of the diaphragm is studied by considering the acoustic pressure re#ection
and transmission coe$cients. The model is extended by including compressibility e!ects. It
is shown that, depending on the size of the aperture of the diaphragm relative to the pipe
diameter, compressibility e!ects are important for an accurate modelling of the acoustic
e!ects, even for quite low-Mach-number #ows in the main pipe. The discussion on the vena
contracta e!ect is based on an original analytical model for a Borda tube placed in the
opening of the diaphragm. A general interpolation formula is presented which allows
a calculation of the vena contracta factor from existing data and theories for the limit cases
of a diaphragm in an in"nite wall and of an incompressible #ow. The discussion is restricted
to diaphragms with sharp edges. The in#uence of both aperture geometry and Mach
number on the vena contracta is discussed. Lastly, low frequency experiments on a slit-like



Figure 2. The vena contracta of the #ow through a diaphragm.
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diaphragm in a pipe are compared to the quasi-steady acoustic model. Data for circular
apertures and perforated plates are provided by Durrieu et al. [9] in which also the design
of an anechoic termination for a "nite range of Mach numbers is considered.

2. QUASI-STEADY MODELLING

2.1. DEFINING THE APPROXIMATIONS

In this paper, two di!erent models to determine the acoustic response of a diaphragm in
a pipe are presented. The models represent di!erent approximations of the #ow through the
diaphragm. A set of non-dimensional numbers is introduced in order to de"ne the limits of
validity of each model. In this section, the non-dimensional numbers are discussed and the
various limits associated with these numbers for a slit-shaped diaphragm in
a two-dimensional channel are explained. In subsequent sections the following
non-dimensional numbers are used: M

1
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/c
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, Mach number; Sr"f h

d
/u
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, Strouhal

number; He"f h
p
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cross-sectional-area ratio. Here u
1
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are the steady main #ow velocity and the speed of
sound in the pipe upstream of the diaphragm respectively. f is the frequency of the acoustic
waves, h

d
is the height of the aperture of the (two-dimensional, slit-shaped) diaphragm
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is the average velocity across the aperture of the diaphragm in the

incompressible approximation, h
p

is the height of the pipe (when it is considered as
a two-dimensional channel), l is the kinematic viscosity, u@

1
is the acoustic velocity in the

plane-wave region of the pipe upstream of the diaphragm, S
j
is the cross-sectional area of

the jet, S
d

is the cross-sectional area of the aperture of the diaphragm, and S
p

is the
cross-sectional area of the pipe. The cross-sectional area is de"ned as the height h

p
times the

width= of the pipe: e.g., S
p
"(=h

p
). Some of these quantities are shown in Figure 3.

The #ow through a diaphragm (sketched in Figure 3) can be separated into three regions:
"rst, the uniform #ow in the upstream pipe segment in which plane acoustic waves are
travelling in upstream and downstream directions; second, the compact #ow in the acoustic
source region around the diaphragm where acoustic energy is produced or dissipated; and
third, the uniform #ow in the downstream pipe segment in which again plane acoustic
waves are travelling in upstream and downstream directions. The Strouhal number, as
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Figure 3. Schematic drawing of a steady #ow through a diaphragm in a pipe with a mean #ow. A uniform in#ow
is accelerated through the diaphragm into the jet. The turbulent jet is followed by the turbulent mixing region
which results in the uniform out#ow.
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de"ned above, is a measure of the importance of unsteady #ow e!ects in the source region.
A low value indicates that the jet #ow can be considered quasi-steady while a high value
indicates an essentially unsteady jet #ow. The Helmholtz number is a measure for the size of
the source region relative to the wavelength of the acoustic wave. When He approaches zero
the wavelength of the acoustic wave is much larger than the linear dimension of the source
region. In that case the phase di!erence of acoustic quantities across the source region can
be neglected and the source region is called compact. In this paper, the focus is on
low-frequency acoustic waves only, i.e., the source region can be considered compact.

Although seven non-dimensional numbers have been de"ned, only "ve of these numbers
can be chosen independently. Therefore, when the Strouhal number and the Helmholtz
numbers are chosen as independent numbers, the Mach number M

1
is related to He and Sr

by M
1
"(S

d
/S

p
)2 (He/Sr). M

1
is a measure of the importance of convective e!ects on the

acoustic wave propagation in the pipe. The limit of HeP0 (while keeping Sr "xed)
produces the limit M

1
P0: consequently, an essentially unsteady but incompressible

description of the source region can be used. The limit of SrPR (while keeping He
constant) also produces the limit M

1
P0: consequently, the convection e!ects and

compressibility e!ects in the source region are negligible and the description of the source
region is essentially unsteady. This last limit corresponds in a linear approximation to the
classical acoustic behavior in a stagnant #uid. In that case, the potential-#ow
approximation is actually recovered because the convection velocity u

1
is negligible in wave

propagation and in the #ow through the diaphragm. Although both cases correspond to
low Mach numbers, they are to be considered as approaching this limit from di!erent
directions and as such both descriptions can be very di!erent [10]. For subsonic #ows the
Mach number in the jet M

j
can be approximated by the product of the cross-sectional-area

ratioS and M
1
. This is a measure of the importance of compressibility in the source region:

when M2
j
@1 and He@1 the source region can be considered incompressible and compact.

In this paper, the focus is on high Reynolds number #ow (O(105)), which means that the
e!ect of viscosity is restricted to thin boundary layers. Upstream of the diaphragm an
inviscid #ow description can be used. However, one important viscous e!ect is taken into
account: #ow separation at the edges of the diaphragm. While the jet #ow is also frictionless,
turbulent dissipation is assumed between the jet #ow and the one-dimensional #ow region
downstream of the diaphragm. Only separation at sharp edges (meaning "xed separation
points even in an unsteady #ow) is considered. Furthermore, only a compact source region
is considered, so He@1. The "rst limit that is treated is Sr@1 such that also M

1
@1. In that

case the quasi-steady incompressible-#ow model of the next paragraph can be used. In the
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case of the limit of Sr@1 such that M
1

is "nite, compressibility in the source region is
essential. In that case the quasi-steady compressible #ow model of the subsequent section
can be used. The third limit that is treated is Sr "nite such that M

1
@1. In that case the

unsteady numerical incompressible-#ow model presented in a companion paper [11] can
be used.

2.2. INCOMPRESSIBLE-FLOW MODEL

An incompressible quasi-steady #ow model of the acoustic response of a #ow through
a diaphragm in a pipe is presented. The e!ect of the diaphragm on the acoustic #ow is
reduced to a discontinuity in the acoustic pressure across the diaphragm. If the magnitude
of this pressure discontinuity is proportional to the acoustic amplitude, the e!ect of the
diaphragm on the acoustic #ow can be described by the scattering matrix: a set of linear
equations relating the acoustic pressure downstream of the diaphragm to the acoustic
pressure upstream of the diaphragm. Due to the assumption of a locally incompressible
#ow, this model is valid only for low-Mach-number #ows with a compact source region. It
is important to recall that the jet velocity can be much higher than the velocity in the pipe
but in the "rst approximation considered here it has to be much less than the speed of
sound.

In Figure 3, a schematic representation of the #ow is shown. A uniform #ow is forced
through a diaphragm resulting in the jet #ow. Because of the sharp edges of the diaphragm
the jet will exhibit the so-called vena contracta e!ect: the jet will contract further than the
aperture of the diaphragm (see section 3 for an extensive discussion). Within the jet the #ow
is isentropic and irrotational so that Bernoulli's equation can be applied together with the
continuity equation:
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The velocity outside the jet #ow is assumed to be negligibly small and at the end of the jet
the pressure is assumed to be uniform over the pipe cross-section. Further downstream, the
jet #ow becomes turbulent and its structure is destroyed in the turbulent mixing region. This
region results in a uniform #ow in the pipe downstream of the mixing region.

The description of the #ow up to the jet #ow is identical to the description by Bechert [5]
of the #ow through a diaphragm used as a pipe termination. However, the boundary
condition of zero pressure recovery in the turbulent mixing region in free space that is used
by Bechert is replaced by a model that relates the quantities across the turbulent mixing
region. In the turbulent mixing region a pressure recovery takes place. Friction is essential
in the bulk of this region. The #ow is assumed to be adiabatic but no longer isentropic.
Integral formulations of the steady continuity and momentum equations are applied to this
region to describe this behavior:
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Here in the mixing region friction at the walls is neglected. In these equations the density o
0

is constant. It is straightforward to rewrite the equations in a form relating the pressure p
1
at

the in#ow to the pressure p
2

at the out#ow. This results in an equation similar to Bechert's
equation for a pipe termination:
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Compared to Bechert's result for a pipe termination the pressure loss (p
2
!p

j
) is reduced:

which is due to the pressure recovery in the turbulent mixing region:
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In order to determine the acoustic e!ect of the diaphragm acoustic perturbations p@
i
are

introduced to describe the oscillation of the pressure p around a mean value p
i
:

p"p
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i
. (7)

The same is done for the velocity:
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. (8)

The equations are linearized in p@
i
and u@

i
. Here p

i
and u

i
are the steady #ow quantities

obtained by solving equations (1)}(4) for the steady #ow (p@
i
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i
"0). The acoustic

pressure perturbations can be split into downstream travelling waves p`
i

and upstream
travelling waves p~

i
so that
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Then the acoustic velocity perturbations in the pipe are related to the acoustic pressure
perturbations by
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with c
0
being the speed of sound. The acoustic perturbations satisfy the linearized version of

equation (5) and of the mass conservation equations (1) and (3):
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Here M
1
"u

1
/c

0
is the Mach number of the steady #ow in the pipe. These equations can be

rewritten in terms of a scattering matrix [12]:
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This notation is very useful because it relates the outgoing waves (away from the
diaphragm) to the incoming waves (towards the diaphragm) by means of re#ection and
transmission coe$cients. In a linear system the outgoing wave p~

1
is the result of the

re#ection R`p`
1

of the incoming wave p`
1

from the left and the transmission ¹~p~
2

of the
incoming wave p~

2
from the right. A similar relationship holds for the outgoing wave p`

2
.

Rewriting equations (11) and (12) in the form of equation (13) yields
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where b"(S
p
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j
!1)2 represents the combined in#uence of the geometry and the vena

contracta e!ect. The vena contracta factor B"S
j
/S

d
will be discussed in section 3. The



Figure 4. Scattering-matrix elements R$ and ¹
$ as de"ned by equation (14) as a function of Mach number M
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matrix is symmetric and the elements satisfy the relationship R`#¹`"R~#¹~"1.
This property is a result of the incompressibility of the #ow model.

In Figure 4, the elements of the scattering matrix are presented as a function of the Mach
number M

1
in the pipe. The value of b used in this "gure is 25 which means that S

p
/S

j
"6.

This implies quite a strong constriction in the pipe and already at a Mach number of 0)05 in
the main pipe (so a Mach number of 0)3 in the jet) compressibility becomes signi"cant.
When the Mach number is reduced to zero while keeping Sr "xed at a small value such that
Sr@1 the in#uence of the diaphragm in the quasi-steady model disappears; hence R$

"0
and ¹

$

"1.
Equation (14) is valid when convection e!ects are neglected in the regions of acoustic

wave propagation. In case these e!ects cannot be neglected but the source region can still be
considered incompressible, then the pressure perturbations should be replaced by
total-exergy perturbations:s p$

i
Pp$

i
(1$M

i
). In the next section, the compressible-#ow

model is discussed and it is shown that in that case the total-exergy perturbations are
a natural choice of variables.

2.3. COMPRESSIBLE-FLOW MODEL

When increasing the Mach number of the #ow the compressibility has an important e!ect
on the acoustic response of a diaphragm in a pipe. For example, at certain conditions the
Mach number in the jet region reaches unity and this restricts the mass #ow and cuts o! the
exchange of acoustic information across the diaphragm from the downstream to the
upstream side. In the present study, subsonic #ows are considered where the jet Mach
number is at most equal to unity. As in the previous section, one can derive a quasi-steady
compressible-#ow model to describe the acoustic response of a diaphragm in a pipe.
A compressible quasi-steady #ow model has the same restrictions as the
incompressible-#ow model, i.e., the source region must be compact (small Helmholtz
number) and the Strouhal number must be low. The model is based on the compressible
low-frequency #ow model for the acoustic response of a step-wise expansion in a pipe as
sTotal-exergy #uctuations are de"ned as B$

i
"(p$

i
/o

i
) (1$M

i
) upon neglecting entropy #uctuations. This

corresponds to the total-enthalpy #uctuations as de"ned by Doak [13] and Howe [14]. As long as entropy
#uctuations are neglected there is no distinction between exergy and enthalpy.
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presented by Ronneberger [1]. Ronneberger introduced the concept of entropy waves of
Kovasznay [15] in his model. These are entropy changes that are convected with the main
#ow velocity. In the present model a new scattering matrix in terms of the total exergy is
introduced that also relates the incoming entropy wave p

1
to the outgoing entropy wave p

2
:
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When a homentropic #ow is assumed upstream of the diaphragm the incoming entropy
wave vanishes (p

1
"0). The scattering matrix can then be reduced to a form similar to

equation (13) but now for the total-exergy waves
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In Figure 3, a schematic representation of the #ow is shown. Since now the density is
a variable one needs six equations to describe the low-frequency acoustic response of
a diaphragm. The set of four equations of the steady incompressible-#ow model is modi"ed
and completed by the isentropic gas relation applied to the in#ow region up to the jet and
the integral formulation of the energy equation that states that energy is conserved in the
#ow because heat transfer at the walls is neglected. A perfect gas with constant speci"c heats
is assumed! Neglecting heat transfer and friction at the walls one "nds
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where c is the ratio of speci"c heats at constant pressure and volume. The energy equation
in that case is equivalent to the conservation of total enthalpy:t B

1
"B

2
. As in the

incompressible model wall friction has been neglected in equation (20) and heat transfer in
equation (22), which implicitly corresponds to the assumption of a short mixing region
downstream of the jet.

In order to "nd the elements of the scattering matrix (15) the equations are split into a set
of non-linear equations for the steady #ow and a set of linearized equations for the acoustic
perturbations. The elements S

ij
of the scattering matrix contain only steady #ow

information. So, "rst the non-linear equations for the steady main #ow have to be solved.
The procedure is as follows. Equations (17, 19, 21) together with c2"cp/o yield an equation
that relates M

1
to the density ratio )
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tFor a calorically perfect gas the total enthalpy is B"C
p
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2
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2
u2.
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where S"S
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) includes the vena contracta e!ect: which, as will be seen in

section 3, is a function of the Mach number. Given the Mach number in the pipe M
1

and
assumingS to be determined as well, equation (23) yields the density ratio )

1j
. Then the jet

Mach number is obtained as
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The momentum equation (20) applied across the turbulent mixing region results in
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Together with the energy equation (22) and Bernoulli's equation (19),
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this results in a quadratic equation for M2
2
. Now both M

2
and )

2j
can be obtained as

functions of M
j
. When the dependency of S on M

j
has to be taken into account the

procedure described above is repeated iteratively by calculating a new value of S after each
iteration (substitution method).

Given M
1
, all other parameters S, )

1j
(equation (23)), M

j
(equation (24)), M

2
(equation

(26)) and )
12
")

1j
/)

2j
can be obtained. In a similar way as for the incompressible case,

acoustic perturbations are introduced and the equations are linearized. This yields
expressions for the coe$cients S

ij
of the scattering matrix as a function of mean #ow

parameters. Since the elements S
ij

of the scattering matrix (15) can be written as functions of
these variables, the scattering matrix is hereby known. However, these functions are too
complex to be presented here.

3. VENA CONTRACTA

An important parameter for the aeroacoustic response of a diaphragm is the ratio of the
velocity in the jet and the velocity in the pipe. The jet velocity is determined by the aperture
of the diaphragm combined with the so-called vena contracta e!ect. The #ow separates at
a sharp corner in the direction of the local grazing #ow along the wall. Just upstream of the
sharp edges of the diaphragm the #ow is directed towards the pipe axis. To pass through the
diaphragm the #ow has to bend in the direction of the axis of the main pipe. This results in
an additional contraction of the #ow after #ow separation at the edges of the diaphragm. In
Figure 5, this e!ect is illustrated. The contraction ratio B is de"ned as the ratio of the jet
cross-section S

j
and the diaphragm cross-section S

d
. For the two-dimensional #ow

considered here, this is equal to the ratio of the heights B"y
j
/y

d
.

A value for the contraction ratio of the #ow through a diaphragm was calculated by
Kirchho! for a two-dimensional incompressible #ow through a slit in an in"nitely
exteneded thin plate (as shown on the left in Figure 5). He found the value
B

0
"n/(n#2)+0)611 (see reference [16]).



Figure 5. Streamlines of the two-dimensional incompressible #ow through a diaphragm. Shown on the left is the
#ow through a hole in a #at plate and on the right the #ow through a diaphragm in a pipe.
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Even for perfectly sharp edges of the diaphragm there are a number of reasons why the
value of the contraction ratio is di!erent from the value found by Kirchho!. The most
important one is the in#uence of the geometry as determined by the ratio of the area of the
diaphragm opening to the pipe cross-sectional area. Another signi"cant in#uence is due to
the compressibility of the #ow. As indicated by Blevins [17], the in#uence of the Reynolds
number also becomes important when the Reynolds number is much smaller than 104.
Based on the expression for circular diaphragms in cylindrical pipes presented by Blevins,
the in#uence of the Reynolds number is expected to be small in our experiments and is
therefore neglected in our analysis. Finally, the sharpness of the edges of the diaphragm is
crucial. Blevins presented data that show that rounding the edges by a few percent of the
height of the opening reduces the vena contracta e!ect almost completely. In our
experiments, considerable attention was given to keeping the rounding of the edges within
1% of the diaphragm height y

d
and in the further analysis sharp edges are assumed. In this

section, the focus is on the in#uence of the geometrical parameter S
d
/S

p
and the in#uence of

the compressibility; i.e., the Mach number M
j
. In this case B"S

j
/S

d
is a function

B(S
d
/S

p
, M

j
) of both the surface-area ratio S

d
/S

p
and the jet Mach number M

j
.

The Borda mouthpiece is a con"guration for which a simple analytical equation can be
derived that determines the contraction ratio B as a function of both Mach number and
surface area ratio. In its original con"guration the Borda mouthpiece is a long narrow tube
that extends into a large vessel as shown in Figure 6 [16]. Here such a Borda tube is
considered to be placed in the opening of a diaphragm in a pipe. It is assumed that the
length of the Borda tube is large compared to its diameter. In that case it is possible to apply
a momentum balance in the x-direction along the boundary shown in Figure 6 (see also
reference [18]) in which stagnation of the #ow is assumed at the upstream wall of the
diaphragm.

On the left of the con"guration a uniform in#ow condition is assumed: velocity u
1
,

pressure p
1
, and density o

1
. On the right, along the upstream walls of the diaphragm,

a stagnation condition is assumed so that the velocity is equal to zero and the pressure is
equal to the upstream stagnation pressure p

0
. The jet #ow at the position of the diaphragm

is also assumed to be uniform: velocity u
j
, pressure p

j
, and density o

j
. Furthermore, the

acceleration of the #uid from the pipe into the jet is assumed to be isentropic. Then mass
conservation S

p
o
1
u
1
"S

j
o
j
u
j

together with the isentropic relation p
1
/p

j
"(o

1
/o

j
)c and

c2"cp/o yields the equation

B
S
d

S
p

"

M
1

M
j
A
o
1

o
j
B
(c`1)@2

. (27)



Figure 6. Borda mouthpiece (left) and Borda mouthpiece in a vessel (right).
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The integral form of the momentum balance applied in the x-direction to the control surface
de"ned in Figure 6 results in

S
p
(p

1
#o

1
u2
1
)"(S

p
!S

d
)p

0
#S

d
p
j
#S

j
o
j
u2
2
,

which after division by S
p
p
1

can be rewritten as

1#cM2
1
"A1!

S
d

S
p
B

p
0

p
1

#

S
d

S
p

(1#BcM2
j
)
p
j

p
1

. (28)

The pressure ratios can be expressed in terms of Mach numbers by using the compressible
form of Bernoulli's equation:

p
0

p
1

"(1
2
(c!1)M2

1
#1)c@(c~1), (29)

p
j

p
1

"A
o
j

o
1
B
c
"A

1
2
(c!1)M2

1
#1

1
2
(c!1)M2

j
#1B

c@(c~1)
. (30)

When S
d
/S

p
and M

j
are used as input parameters, substitution of these equations in

equation (28) results in an implicit equation for M
1
:

1#cM2
1
"A1!

S
d

S
p
B (1

2
(c!1)M2

1
#1)c@(c~1)#

S
d

S
p
A
1
2
(c!1)M2

1
#1

1
2
(c!1)M2

j
#1B

c@(c~1)

#cM
j
M

1A
1
2
(c!1)M2

1
#1

1
2
(c!1)M2

j
#1B

1@2
. (31)

The value of M
1

is obtained by solving iteratively this implicit equation and the
corresponding B is obtained after substitution of the result into equation (27).

In Figure 7, the contraction ratio B is shown as a function of jet Mach number for "ve
di!erent values of S

d
/S

p
. By comparing the di!erent curves one "nds that the e!ect of

compressibility is not sensitive to the geometric parameter S
d
/S

p
. For S

d
/S

p
less than 0)6 the

di!erent curves can be approximated accurately by just shifting the curve for S
d
/S

p
"0



Figure 7. Contraction ratio B"S
j
/S

d
as a function of jet Mach number M

j
for "ve di!erent values of the ratio

S
d
/S

p
.

46 G. C. J. HOFMANS E¹ A¸.
upwards. An accurate approximation for B for S
d
/S

p
(0)6 therefore is

B(S
d
/S

p
, M

j
)+B(S

d
/S

p
, 0)#B(0, M

j
)!B(0, 0), (32)

in which

B(S
d
/S

p
, 0)"

1

1#J1!S
d
/S

p

, B(0, M
j
)"

(1#(c!1)/2M2
j
)c@(c~1)!1

cM2
j

and B(0, 0)"1/2.
For S

d
/S

p
(0)6 this expression results in an approximate value for B that is within 0)5% of

the exact solution. So the most important in#uence of the geometric parameter is that it
determines the o!set of B for M

j
"0. The e!ect of the compressibility is then almost

independent of the geometry. Since this geometry bears a strong resemblance to the geometry
of a thin diaphragm in a pipe one expects that a similar behavior applies to that case. Thus,
one can restrict oneself to deriving B(S

d
/S

p
, 0) and B(0, M

j
) for the case of a diaphragm in

a pipe. One can then use the interpolation formula (32) to calculate B(S
d
/S

p
, M

j
).

By means of a hodograph method Busemann [9] derived an expression for the
contraction ratio B

0
"(S

d
/S

p
, 0) of a two-dimensional pipe #ow through a diaphragm. The

hodograph method (see reference [16]) consists in constructing a #ow solution in the
velocity plane which is subsequently transformed to the physical plane by integrating along
the stream lines.A The geometry that was considered by Busemann is shown on the right in
Figure 5. A diaphragm with an opening of S

d
is placed in a pipe of height S

p
. Behind the

diaphragm the #ow forms a jet with height S
j
. The contraction ratio B

0
derived by

Busemann is the solution of the implicit equation

B
0
"

S
j

S
d

"

n
n#2((1/B

0
) S

p
/S

d
!B

0
S
d
/S

p
) arctan(B

0
S
d
/S

p
)
. (33)

In this equation, the asymptotic solution of Kirchho! can be found by taking the limit of
S
d
@S

p
. In Figure 8, the contraction ratio B is shown as a function of the ratio S

d
/S

p
. The

two limits of the solution are B
0
"n/(n#2) for S

d
/S

p
"0 and B

0
"1 for S

d
/S

p
"1. It is
AIn two-dimensional potential-#ow theory the complex velocity w"u#iv is related to the complex stream
function F by: wN "dF(z)/dz where z"x#iy. When it is possible to construct F(w) the physical co-ordinates z can
be obtained by integration: z": dF/wN #constant.



Figure 8. Contraction ratio B(S
d
/S

p
, 0) as a function of the ratio of diaphragm opening and pipe height [19].

Figure 9. Contraction ratio B(0, M
j
) as a function of Mach number M

j
in the jet for a hole in a #at plate.

Solution obtained by Chaplygin [18]; **, Tangent gas (Shapiro); ==, Chaplygin.
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clear from Figure 8 that for S
d
/S

p
)0)2 Kirchho! 's result is a very reasonable

approximation.
Chaplygin derived an exact solution for a two-dimensional compressible #ow through

a hole in an in"nitely extended thin plate by means of the hodograph method [18]. Since
this solution is a rather complex expression containing hypergeometric functions, the
solution is presented in Figure 9.

With Busemann's solution B(S
d
/S

p
, 0) for M

j
"0, Chaplygin's solution B(0, M

j
) for

S
d
/S

p
"0, and Kirchho!'s solution B(0, 0)"B

0
"n/(n#2), one can apply equation (32) to

the case of the diaphragm in a pipe and thus "nd an approximation for B(S
d
/S

p
, M

j
).

4. COMPRESSIBLE SCATTERING MATRIX

The elements of the 2]2 compressible scattering matrix of equation (16) with a constant
value of S are compared to the elements of the equivalent matrix in the incompressible
case in Figure 10. For low Mach number the incompressible-#ow model and the



Figure 10. Scattering-matrix elements R$ and ¹
$ as de"ned by equation (16) as a function of Mach number

M
1

compared to the incompressible #ow results for the case where S"S
p
/S

j
"5)97. The incompressible #ow

results are given by the dashed lines.
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compressible-#ow model agree. It can be shown that the matrix elements in the limit of very
low Mach number are equal to the elements of the incompressible scattering matrix (14).
This also indicates that the scattering matrix (even in the incompressible case) should be
considered a scattering matrix for total-exergy waves. It is clearly evident from Figure 10
that ¹` diverges from ¹~ (as well as R` from R~) as the Mach number increases. So the
symmetry of the scattering matrix is lost. Another property of the incompressible #ow
model is lost: ¹` and R` do not add up to one and the same holds for ¹~ and R~. At
a Mach number close to 0)1 the #ow in the jet becomes sonic. In that case, no information
can travel upstream through the diaphragm and therefore ¹~"0. This restriction does not
apply to information that travels downstream through the diaphragm so ¹` is not equal to
zero. This already explains the asymmetry between the behavior of ¹` and that of ¹~.
Note that in the discussion of the incompressible scattering matrix it was implicitly assumed
that the e!ect of the vena contracta factor S

j
/S

d
was known and "xed, independent of the

Mach number. As was seen in the previous paragraph there is an additional implicit
dependence on the Mach number M

j
through the variation of S as a function of M

j
in the

case of a compressible scattering matrix.

5. EXPERIMENTAL RESULTS

5.1. EXPERIMENTAL SET-UP AND PROCEDURE

In order to verify the accuracy of the models introduced in the previous sections,
low-frequency experiments have been performed on the acoustic behavior of a diaphragm
in a pipe. The focus was on the measurement of the Mach-number dependence at low
frequency. In Figure 11, a schematic drawing of the set-up is presented. This is essentially
the same set-up as used earlier by Peters [20]. Dry air at high pressure enters the system at
(A). The #ow is controlled by the reduction valve and the #ow rate is measured at (C). The
mean static pressure (accuracy 0)1%) and temperature (accuracy 0)1%) are measured in
order to characterize the conditions of the experiments. From these data the speed of sound



Figure 11. Experimental set-sup: (A) high-pressure supply, (B) pressure reduction valve, (C) #ow meter, (D)
manometer, (E) thermometer, (F) settling chamber, (G) siren, (H) #exible connection, (I) sand box, (J) piezo-electric
pressure transducers, (K) charge ampli"ers, (L) data analyzer, (M) pipe termination.
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c
1

is determined which together with the #ow rate provides the Mach number M
1

of the
#ow (accuracy 2%). In the following discussion of the experiments the index 1 will often be
omitted and will be referred to as the Mach number of the experiments. Please note,
however, that account has been taken of the di!erence between the upstream Mach number
M

1
and the downstream Mach number M

2
in the analysis of the acoustical data. After

passing the settling chamber the #ow is led through the sound source: a siren. Here
amplitude and frequency of the acoustic perturbations can be adjusted. Via a #exible
connection tube and a box of sand for damping mechanical vibrations the #ow "nally enters
the test section. This is a 6 m long cylindrical pipe with an internal radius of 15)013 mm and
a wall thickness of 5 mm. The roughness of the internal walls of the pipe is of the order of
0)1 km. The diaphragm is positioned at about 4 m downstream of the siren, which
guarantees a fully developed turbulent pipe #ow. At both sides of the diaphragm,
piezo-electric pressure transducers (PCB 116A) are mounted in the pipe wall. The signals of
the transducers are led to a set of charge ampli"ers (Kistler 5011) which are connected to the
data analyzer (HP-35650).

The re#ection and transmission coe$cients are measured by using the so-called
two-microphone method described by Abom and BodeH n [21]. Several pairs of microphones
are used to measure the acoustic response of the diaphragm. The microphone positions are
chosen for an optimal measurement. One microphone is at a pressure node while the other
is close to a pressure anti-node of the standing wave pattern. This choice imposes a "xed
frequency during the experiments. By using the data analyzer the complex transfer function
H

ij
(u) is measured. This function is the ratio of the complex acoustic pressure amplitudes at

positions x
i
and x

j
:

H
ij
(u)"p@(x

i
, u)/p@(x

j
, u). (34)



Figure 12. Three di!erent slit-like diaphragms that have been used in the experiments: diaphragm I had
h
d
"10)7 mm and S

d
/S

p
"0)45; diaphragm II has h

d
"6)4 mm and S

d
/S

p
"0)27; diaphragm III has h

d
"2)6 mm

and S
d
/S

p
"0)11.
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Figure 13. Microphone con"guration used for the low-frequency measurements at 77 Hz. Positions of the
microphones j given in meters.
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The re#ection and transmission coe$cients can then be expressed in terms of transfer
functions. The wave number is corrected for convection (Doppler) e!ects and for
visco-thermal dissipation by using Kirchho!'s damping coe$cient a

0
[22, 23]:

k$

"

k
0
#(1!i)a

0
1$M

, a
0
"

J2ul
2ac

0
A1#

c!1

JPr B . (35, 36)

Here l is the kinematic viscosity of air, a the radius of the pipe, and Pr is the Prandtl number
of air. Peters [20] presented theoretical and experimental results for the correction of a

0
due

to the interaction of the acoustic waves with the turbulent main #ow. This correction is used
to account for the e!ects of visco-thermal dissipation on the wave propagation.

The diaphragms being studied are slit-shaped diaphragms in a cylindrical pipe. Although this
is a three-dimensional con"guration the response of the con"guration is expected to be
governed by the two-dimensionality of the slit-shaped diaphragm. This makes a comparison to
two-dimensional numerical simulations reasonable. Three diaphragms with varying apertures
have been used. The aperture can be as large as 45, 27 or 11% of the pipe cross-sectional area. In
Figure 12, one of the diaphragms is shown. The edge of the diaphragms is kept sharp
(radius of curvature less than 10~5 m) and at the downstream side the aperture diverges
with a bevel angle of 453. This ensures a predictable vena contracta e!ect.
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Figure 14. Microphone con"guration used for the measurement at 793 Hz. Positions of the microphones
j given in meters.
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Downstream of the diaphragm the pipe has a length ¸. The air exits the set-up at the end
of the pipe into the surroundings of the laboratory. At both sides of the diaphragm three or
four pressure transducers are located. The position of the diaphragm is chosen as the
reference point for the co-ordinate system. In Figure 13, the microphone positions that are
used for the low-frequency experiments (77 Hz) are shown. In order to show the deviations
from the quasi-steady model for higher frequencies, experiments have also been performed
at a higher frequency (793 Hz). In Figure 14, the microphone positions for these
experiments are shown. Additional data for the scattering matrix at low frequencies by
means of two-load method are presented in a paper by Durrieu et al. [9] which is focused on
the quasi-steady response of circular diaphragms and perforated plates. In all cases the
position x"0 corresponds to the upstream face of the diaphragm. This is the position at
which the re#ection and transmission coe$cients are determined.

5.2. EXPERIMENTAL RESULTS FOR LOW FREQUENCIES

The results of the theoretical model are compared to experimental measurements of the
re#ection and transmission of acoustic waves by a diaphragm in a pipe. The experiments
consisted in measuring the following complex quantities as functions of the Mach number:

R
1
"p~

1
/p`

1
, ¹

21
"p`

2
/p`

1
, R

2
"p~

2
/p`

2
. (37)

These measurements do no determine the response of the diaphragm separately but they
determine the combined response of the diaphragm and pipe termination (open pipe end).
However, all the information about the open pipe end is contained in the re#ection
coe$cient R

2
and a lot of theoretical and experimental work has already been done on open

pipe ends. Peters [20] presented an elaborate discussion on the open pipe end. The
experimental data of Peters were used in the form of a "t. These data have been obtained in
the ranges 0)01(M(0)2 and 0)01(Sr(1 which are close to the ranges of the present
experiments. The magnitude of the re#ection coe$cient of the open pipe end is then
described as proposed by Cargill [24]

DR D"(1#AM) (1!(ka)2/2), (38)

where A is approximated by

A(x)"G
x2/3, 0)x(1,

2x!1

3
, 1)x(1)85,

0)9, 1)85)x,

(39)



Figure 15. Comparison of experimentally measured re#ection and transmission coe$cients and theoretical
predictions based on the compressible-#ow model including the vena contracta e!ect. Diaphragm I, f"77 Hz,
¸"2)1959 m.
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in which

x"ka/M"(2n f a)/u
0
"2n Sr. (40)

The phase of the re#ection coe$cient is presented in terms of an end correction d
p
which is

approximated by

d
p
a
"G

0)2#0)4x2, 0)x(1,

0)6, 1)x.
(41)

The contraction ratio used in the compressible-#ow model of section 2.3 is estimated by

B"
B

0
n/(n#2) A

n
n#2

#0)13M2
jB , (42)

whereB
0
is taken from Figure 8 at the average value of h

d
/h

p
"S

d
/S

p
across the width of the

diaphragm. The term between brackets is the correction for the compressibility of the #ow
and it is an accurate "t to the result of Chaplygin (shown in Figure 9).

In Figure 15, the prediction obtained from the compressible-#ow model is compared to
experimentally obtained values of R

1
, ¹

21
, and R

2
at a frequency of 77 Hz for the

diaphragm with the largest aperture (diaphragm I, S
d
/S

p
"0)45). On the left, the magnitude

of the coe$cients is shown and on the right the phases of the coe$cients are shown. The
experimental results are the markers and the lines are the theoretical predictions from the
compressible #ow model. As can be expected, the results for R

2
(which are experimental

data for the open pipe end) coincide with the "t to the results of Peters [20]. Also, the values
of R

1
and ¹

21
are in excellent agreement with our quasi-steady model. A similar agreement

is evident in Figure 16. The frequency is again 77 Hz and the diaphragm used in this case
has the smallest aperture (diaphragm III, S

d
/S

p
"0)11). In both cases, the quasi-steady

approximation gives very accurate predictions for the acoustic response of the diaphragm.
In the companion paper it is shown that the important parameter for the unsteadiness
caused by the #ow through the diaphragm is the Strouhal number based on the aperture
height and velocity: Sr"f h

d
/u

d
with u

d
"(S

p
/S

d
)u

1
. In both experimental series, the highest

value of the Strouhal number encountered is less than 0)05 which explains the validity of the



Figure 16. Comparison of experimentally measured re#ection and transmission coe$cients and theoretical
predictions based on the compressible-#ow model including the vena contracta e!ect. Diaphragm III, f"77 Hz,
¸"5)0069 m.

Figure 17. Comparison of experimentally measured re#ection and transmission coe$cients and theoretical
predictions based on the compressible-#ow model including the vena contracta e!ect. Diaphragm III, f"793 Hz,
¸"0)8089 m.
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assumption of quasi-steadiness. The excellent agreement between theory and experimental
results at 77 Hz for both diaphragms I and III indicates that the three-dimensional e!ects
due to the use of a circular pipe are negligible. The quality of this agreement is almost
surprising in view of the crudeness of some assumptions in the model such as that of a very
short turbulent mixing region downstream of the jet. This assumption was made implicitly
by neglecting wall friction e!ects in equation (20) and heat transfer in equation (22). In
reality, a long mixing region of at least 10 pipe diameters is expected before the fully
developed turbulent pipe #ow is established. However, the aeroacoustic behavior seems to
be determined by the details of the jet #ow rather than by the structure of the mixing region.
When the frequency is raised to 793 Hz the results for diaphragm III are still in reasonable
agreement with experimental results (see Figure 17). The di!erence between the results of
theory and experiment is somewhat larger than in the low-frequency case, but this might
only be due to inaccuracies in the "t for R

2
. These inaccuracies a!ect the values of R

1
and

¹
21

as well. When diaphragm III is replaced by diaphragm I the inaccuracies in R
2

are no
longer the only source of inaccuracies. In Figure 18, the di!erence between results of theory
and experiments can be seen to be signi"cant as opposed to di!erences in the other three



Figure 18. Comparison of experimentally measured re#ection and transmission coe$cients and theoretical
predictions based on the compressible-#ow model including the vena contracta e!ect. Diaphragm I, f"793 Hz,
¸"1)7651 m.
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cases. In fact, at the Mach number of 0)01 the Strouhal number is close to unity which
implies that the #ow through the diaphragm is essentially unsteady.

6. CONCLUDING REMARKS

In this paper, a study has been presented of the #ow through a slit-shaped diaphragm in
a pipe. This study consisted of analytical modelling and measurements. It has been shown
that for acoustic perturbations the diaphragm can be acoustically characterized by the
so-called scattering matrix. This matrix relates the outgoing waves to the incoming waves.
In the case of an incompressible #ow the matrix is shown to be symmetric. The symmetry of
the matrix is destroyed by compressibility e!ects.

The models presented in this paper represent di!erent approximations to the #ow
through the diaphragm. The focus has been on high Reynolds number and low Helmholtz
number #ows. In this case, the #ow can be separated into two regions: a region of wave
propagation (far upstream and far downstream of the diaphragm) and a source region
(around the diaphragm). The source region can be considered compact and the e!ect of
wave propagation can be neglected inside the source region. The production or dissipation
of acoustic energy takes place in the source region. For M

j
@1 and Sr@1 the incompressible

quasi-steady #ow model of section 2.2 can be applied. When M
j
"O(1) and still Sr@1

compressibility is important in the source region. For subsonic #ows M
j
)1 the

compressible quasi-steady #ow model of section 2.3 can be used. When, on the other hand,
M

j
@1 but now Sr"O (1) the #ow in the source region is essentially unsteady but can still be

considered incompressible.
Both an incompressible and a compressible quasi-steady model of the #ow through

a diaphragm in a pipe have been presented. An important parameter in these models is the
vena contracta factor B. The in#uence of the diaphragm geometry (S

d
/S

p
) as well as the

in#uence of compressibility on the vena contracta factor have been discussed. An
interpolation method is proposed to obtainB (as a function of both S

d
/S

p
and M

j
) from limit

cases S
d
/S

p
P0 and M

j
P0 respectively. The predictions of the compressible-#ow model

are compared to low-frequency experimental results for re#ection and transmission
coe$cients. The agreement between the model and the experiments is very good at
a frequency of 77 Hz. This indicates that the crude assumptions used in the description of
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the downstream turbulent mixing region are not crucial for the aeroacoustic response of the
system. This response seems to be determined locally at the free jet formed by #ow
separation in the diaphragm. At a higher frequency of 793 Hz the experimental results
diverge from the model predictions. The unsteadiness caused by the #ow is expected to be
important in that case because Sr"O (1). The response of the diaphragm at low Mach
numbers for Sr"O (1) is discussed in a companion paper [11].

The focus has been on a rectangular aperture in order to enable a comparison with the
results of two-dimensional numerical #ow simulations as presented in the companion
paper. Durrieu et al. [9] presented measurements for round ori"ces.
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